pctechguide.com

  • Home
  • Guides
  • Tutorials
  • Articles
  • Reviews
  • Glossary
  • Contact

DRAM – Dynamic Random Access Memory

DRAM chips are large, rectangular arrays of memory cells with support logic that is used for reading and writing data in the arrays, and refresh circuitry to maintain the integrity of stored data. Memory arrays are arranged in rows and columns of memory cells called wordlines and bitlines, respectively. Each memory cell has a unique location or address defined by the intersection of a row and a column.

DRAM is manufactured using a similar process to how processors are: a silicon substrate is etched with the patterns that make the transistors and capacitors (and support structures) that comprise each bit. It costs much less than a processor because it is a series of simple, repeated structures, so there isn’t the complexity of making a single chip with several million individually-located transistors and DRAM is cheaper than SRAM and uses half as many transistors. Over the years, several different structures have been used to create the memory cells on a chip, and in today’s technologies the support circuitry generally includes:

  • sense amplifiers to amplify the signal or charge detected on a memory cell
  • address logic to select rows and columns
  • Row Address Select (RAS) and Column Address Select (CAS) logic to latch and resolve the row and column addresses and to initiate and terminate read and write operations
  • read and write circuitry to store information in the memory’s cells or read that which is stored there
  • internal counters or registers to keep track of the refresh sequence, or to initiate refresh cycles as needed
  • Output Enable logic to prevent data from appearing at the outputs unless specifically desired.

A transistor is effectively a switch which can control the flow of current – either on, or off. In DRAM, each transistor holds a single bit: if the transistor is open, and the current can flow, that’s a 1; if it’s closed, it’s a 0. A capacitor is used to hold the charge, but it soon escapes, losing the data. To overcome this problem, other circuitry refreshes the memory, reading the value before it disappears completely, and writing back a pristine version. This refreshing action is why the memory is called dynamic. The refresh speed is expressed in nanoseconds (ns) and it is this figure that represents the speed of the RAM. Most Pentium-based PCs use 60 or 70ns RAM.

The process of refreshing actually interrupts/slows down the accessing of the data but clever cache design minimises this. However, as processor speeds passed the 200MHz mark, no amount of cacheing could compensate for the inherent slowness of DRAM and other, faster memory technologies have largely superseded it.

DRAM Timing and Signals

The most difficult aspect of working with DRAM devices is resolving the timing requirements. DRAMs are generally asynchronous, responding to input signals whenever they occur. As long as the signals are applied in the proper sequence, with signal durations and delays between signals that meet the specified limits, the DRAM will work properly. These are few in number, comprising:

  • Row Address Select: The /RAS circuitry is used to latch the row address and to initiate the memory cycle. It is required at the beginning of every operation. /RAS is active low; that is, to enable /RAS, a transition from a high voltage to a low voltage level is required. The voltage must remain low until /RAS is no longer needed. During a complete memory cycle, there is a minimum amount of time that /RAS must be active, and a minimum amount of time that /RAS must be inactive, called the /RAS precharge time. /RAS may also be used to trigger a refresh cycle (/RAS Only Refresh, or ROR).
  • Column Address Select: /CAS is used to latch the column address and to initiate the read or write operation. /CAS may also be used to trigger a /CAS before /RAS refresh cycle. This refresh cycle requires /CAS to be active prior to /RAS and to remain active for a specified time. It is active low. The memory specification lists the minimum amount of time /CAS must remain active to initiate a read or write operation. For most memory operations, there is also a minimum amount of time that /CAS must be inactive, called the /CAS precharge time. (An ROR cycle does not require /CAS to be active.)
  • Address: The addresses are used to select a memory location on the chip. The address pins on a memory device are used for both row and column address selection (multiplexing). The number of addresses depends on the memory’s size and organisation. The voltage level present at each address at the time that /RAS or /CAS goes active determines the row or column address, respectively, that is selected. To ensure that the row or column address selected is the one that was intended, set up and hold times with respect to the /RAS and /CAS transitions to a low level are specified in the DRAM timing specification.
  • Write Enable: The /WE signal is used to choose a read operation or a write operation. A low voltage level signifies that a write operation is desired; a high voltage level is used to choose a read operation. The operation to be performed is usually determined by the voltage level on /WE when /CAS goes low (Delayed Write is an exception). To ensure that the correct operation is selected, set up and hold times with respect to /CAS are specified in the DRAM timing specification.
  • Output Enable: During a read operation, this control signal is used to prevent data from appearing at the output until needed. When /OE is low, data appears at the data outputs as soon as it is available. /OE is ignored during a write operation. In many applications, the /OE pin is grounded and is not used to control the DRAM timing.
  • Data In or Out: The DQ pins (also called Input/Output pins or I/Os) on the memory device are used for input and output. During a write operation, a voltage (high=1, low=0) is applied to the DQ. This voltage is translated into the appropriate signal and stored in the selected memory cell. During a read operation, data read from the selected memory cell appears at the DQ once access is complete and the output is enabled (/OE low). At most other times, the DQs are in a high impedance state; they do not source or sink any current, and do not present a signal to the system. This also prevents DQ contention when two or more devices share the data bus.
  • What is Level 1 (L1) Cache Memory?
  • What is L2 (Level 2) cache memory?
  • RAM or Main Memory – PC / computer memory (DIMM, DRAM, SDRAM)
  • DRAM – Dynamic Random Access Memory
  • FPM DRAM
  • EDO (Extended Data Out) and BEDO (Burst Extended Data Out) DRAM
  • SDRAM
  • PC133 SDRAM
  • DDR SDRAM explained
  • DDR2 DRAM
  • Dual Channel DDR Memory
  • 1T SRAM
  • Direct DRAM
  • SIMMs
  • DIMM Memory
  • RIMMs Memory
  • Memory Presence Detection
  • Parity Memory
  • ECC Memory
  • Memory Upgrades
  • The Evolution of Memory
  • Flash Memory
  • Magnetic RAM

Filed Under: Computer Memory Tagged With: how does DRAM work, what is DRAM, what is dynamic random access memory

Latest Articles

WinXP Installation Information Collection

In common with people who effectively upgrade to a new version of Windows by purchasing a new system, users who go the clean install route have traditionally been faced with the difficulty of somehow replicate configurable aspects of their previous operating system environment to their new PC. … [Read More...]

NAS – Network Attached Storage: Storage Issue Solved

  When have a variety of digital music and movies or you have a business running, storing the data from different computers is not complicated anymore with NAS or the Network Attached Storage. This is a self-contained computer device can be used as a file server and backup storage for … [Read More...]

The 4thGen Intel Core i7 Processor

Intel has never ceased to innovate when it comes to its processors. Compare from the previous generation of Intel Core i7 processor has faster multiple applications along its amazing digital media creation. You can feel, better performance in every task you’ll do, especially with the Intel … [Read More...]

Comments

  1. kingsvj says

    January 20, 2015 at 8:32 am

    u cannot

Gaming Laptop Security Guide: Protecting Your High-End Hardware Investment in 2025

Since Jacob took over PC Tech Guide, we’ve looked at how tech intersects with personal well-being and digital safety. Gaming laptops are now … [Read More...]

20 Cool Creative Commons Photographs About the Future of AI

AI technology is starting to have a huge impact on our lives. The market value for AI is estimated to have been worth $279.22 billion in 2024 and it … [Read More...]

13 Impressive Stats on the Future of AI

AI technology is starting to become much more important in our everyday lives. Many businesses are using it as well. While he has created a lot of … [Read More...]

Graphic Designers on Reddit Share their Views of AI

There are clearly a lot of positive things about AI. However, it is not a good thing for everyone. One of the things that many people are worried … [Read More...]

Redditors Talk About the Impact of AI on Freelance Writers

AI technology has had a huge impact on our lives. A 2023 survey by Pew Research found that 56% of people use AI at least once a day or once a week. … [Read More...]

11 Most Popular Books on Perl Programming

Perl is not the most popular programming language. It has only one million users, compared to 12 million that use Python. However, it has a lot of … [Read More...]

Guides

  • Computer Communications
  • Mobile Computing
  • PC Components
  • PC Data Storage
  • PC Input-Output
  • PC Multimedia
  • Processors (CPUs)

Recent Posts

ADSL Network

This is a three-stage process, as follows: installing the network card Connecting the network cables installing the network card … [Read More...]

MVA – Multi-domain Vertical Alignment in LCD Monitors

Continuing research on its VA system led to a refinement - which Fujitsu refer to as Multi-domain Vertical Alignment (MVA) technology - a year … [Read More...]

What is the Intel E7205 Chipset? What Features Does it Have?

At the end of 2002, Intel announced the launch of a dozen Intel Xeon processor family products, including new processors, chipsets and platforms … [Read More...]

[footer_backtotop]

Copyright © 2025 About | Privacy | Contact Information | Wrtie For Us | Disclaimer | Copyright License | Authors