WaveTable doesn’t use carriers and modulators to create sound, but actual samples of real instruments. A sample is a digital representation of a waveform produced by an instrument. ISA-based cards generally store samples in ROM, although newer PCI products use the PC’s main system RAM, in banks which are loaded when Windows starts up and can theoretically be modified to include new sounds.
Whereas one FM sound card will sound much the same as the next, WaveTable cards differ significantly in quality. The quality of the instruments is determined by several factors:
- the quality of the original recordings
- the frequency at which the samples were recorded
- the number of samples used to create each instrument
- the compression methods used to store the samples.
Most instrument samples are recorded in 16-bit 44.1kHz but many manufacturers compress the data so that more samples, or instruments, can be fit into small amounts of memory. There is a trade-off, however, since compression often results in loss of dynamic range or quality.
When an audio cassette is played back either too fast or too slow, its pitch is modified. The same is true of digital audio. Playing a sample back at a higher frequency than its original results in a higher pitched sound, allowing instruments to play over several octaves. But when certain timbres are played back too fast, they begin to sound weak and thin. This is also true when a sample is played too slow: it sounds dull and unrealistic. To overcome this, manufacturers split up the keyboard into several regions and apply the relatively pitched sample from the instrument to it. The more sample regions recorded results in a more realistic reproduction.
Every instrument produces subtly different timbres depending on how it is played. For example, when a piano is played softly, you don’t hear the hammers hitting the strings. When it’s played harder, not only does this become more apparent, but there are also changes in tone.
Many samples and variations have to be recorded for each instrument to recreate this range of sound accurately with a synthesiser. Inevitably, more samples require more memory. A typical sound card may contain up to 700 instrument samples within 4MB ROM. To accurately reproduce a piano sound alone, however, would require between 6MB and 10MB of data. This is why there is no comparison between the synthesised sound and the real thing.
Upgrading to WaveTable sound doesn’t always mean having to buy a new sound card. Most 16-bit sound cards have a feature connector that can connect to a WaveTable daughterboard. The quality of the instruments such cards provide differs significantly, and is usually a function of how much ROM the card has. Most cards contain between 1MB and 4MB of samples, and offer a range of digital effects.
- How Do Computers Make Pictures?
- Graphic Card Resolution
- Graphic Card Colour Depth
- Graphic Card Components
- Graphic Card Memory
- Graphic Card Driver Software
- 3d Accelerated Graphic Cards
- Graphic Card Geometry
- 3D Rendering
- FSAA Graphic Card Technology
- Digital Graphic Cards
- DVI Graphic Cards
- HDCP Technology
- Graphic Card HDMI Ports
- Graphic Card Display Port
- Unified Display Special Interest Group
- DirectX
- OpenGL technology
- Direct3D
- Talisman
- Fahrenheit Graphic Cards
- SLI Technology
- CrossFire Graphic Cards