pctechguide.com

  • Home
  • Guides
  • Tutorials
  • Articles
  • Reviews
  • Glossary
  • Contact

Pentium Tualatin

It had been Intel’s original intention to introduce the Tualatin processor core long before it actually did, as a logical progression of the Pentium III family that would – as a consequence of its finer process technology – allow higher clock frequencies. In the event, the company was forced to switch its focus to the (still 0.18-micron) Pentium 4, on the basis that it represented a better short term prospect in its ongoing clocking war with AMD than the Tualatin which, of course, would require a wholesale switch to a 0.13-micron fabrication process. As a consequence it was not until mid-2001 that the new core appeared.

The Tualatin is essentially a 0.13-micron die shrink of its Coppermine predecessor. It does offer one additional performance enhancing feature however – Data Prefetch Logic (DPL). DPL analyses data access patterns and uses available FSB bandwidth to prefetch data into the processor’s L2 cache. If the prediction is incorrect, there is no associated performance penalty. If it’s correct, time to fetch data from main memory is avoided.

Although Tualatin processors are nominally Socket 370 compliant, clocking, voltage and signal level differences effectively mean that they will not work in existing Pentium III motherboards.

Since the release of the Pentium Pro, all Intel P6 processors have used Gunning Transceiver Logic+ (GTL+) technology for their FSB. The GTL+ implementation actually changed slightly from the Pentium Pro to the Pentium II/III, the latter implementing what is known as the Assisted Gunning Transceiver Logic+ (AGTL+) bus. Both GTL+ and AGTL+ use 1.5V signalling. Tualatin sees a further change, this time to an AGTL signalling bus that uses 1.25V signalling and is capable of a peak theoretical maximum throughput of 1.06GBps. Furthermore, the new core supports use of a differential bus clocking scheme – in addition to single-ended clocking – as a means of reducing Electromagnetic Interference (EMI) associated with higher clock speeds.

Because it is manufactured on a smaller process, Tualatin requires much less power than did the Coppermine core. The VRM8.4 specification used by its predecessor only provided support for voltages in increments of 0.05V. Tualatins CPUs require voltage regulators that comply with VRM8.8 specifications, allowing adjustments in increments of 0.025V.

Finally, Tualatin introduces a novelty in the exterior of the of the CPU. Its new FC-PGA2 packaging contains an Integrated Heat Spreader (IHS) designed to perform two important functions. The first is to improve heat dissipation by providing a larger surface area onto which a heatsink can be attached. The second is to afford protection against mechanical damage to the fragile processor core, not least against the accidental damage that can occur during the fitting of a heatsink.

Three Socket 370 versions of Tualatin were originally defined: the Pentium III-A desktop unit, the Pentium III-S server unit and the Pentium III-M mobile unit. The server and mobile versions both boast an increased L2 cache of 512KB. Consistent with the apparent desire to avoid making the Tualatin too much of a threat to the flagship Pentium 4 processor in the mainstream desktop market, the former has the same 256KB L2 cache configuration as its Coppermine predecessor.

The table below shows the various incarnations of the Pentium III desktop processor to date:

Date Codename Transistors L2 Cache Fabrication (µm) Speed (MHz)
1999 Katmai 9,500,000 512KB 0.25 450/500/550
1999 Coppermine 28,100,000 256KB (on-die) 0.18 533 to 733MHz
2000 Coppermine 28,100,000 256KB (on-die) 0.18 850MHz to 1GHz
2001 Tualatin 44,000,000 256KB (on-die) 0.13 1.2GHz to 1.4GHz

Not only was the Tualatin the company’s first CPU to be produced using a 0.13-micron fabrication process, it also marked Intel’s transition to the use of copper interconnects instead of aluminium.

Since the release of the Pentium Pro, all Intel P6 processors have used Gunning Transceiver Logic+ (GTL+) technology for their FSB. The GTL+ implementation actually changed slightly from the Pentium Pro to the Pentium II/III, the latter implementing what is known as the Assisted Gunning Transceiver Logic+ (AGTL+) bus. Both GTL+ and AGTL+ use 1.5V signalling. Tualatin sees a further change, this time to an AGTL signalling bus that uses 1.25V signalling and is capable of a peak theoretical maximum throughput of 1.06GBps. Furthermore, the new core supports use of a differential bus clocking scheme – in addition to single-ended clocking – as a means of reducing Electromagnetic Interference (EMI) associated with higher clock speeds.

Because it is manufactured on a smaller process, Tualatin requires much less power than did the Coppermine core. The VRM8.4 specification used by its predecessor only provided support for voltages in increments of 0.05V. Tualatins CPUs require voltage regulators that comply with VRM8.8 specifications, allowing adjustments in increments of 0.025V.

Finally, Tualatin introduces a novelty in the exterior of the of the CPU. Its new FC-PGA2 packaging contains an Integrated Heat Spreader (IHS) designed to perform two important functions. The first is to improve heat dissipation by providing a larger surface area onto which a heatsink can be attached. The second is to afford protection against mechanical damage to the fragile processor core, not least against the accidental damage that can occur during the fitting of a heatsink.

Three Socket 370 versions of Tualatin were originally defined: the Pentium III-A desktop unit, the Pentium III-S server unit and the Pentium III-M mobile unit. The server and mobile versions both boast an increased L2 cache of 512KB. Consistent with the apparent desire to avoid making the Tualatin too much of a threat to the flagship Pentium 4 processor in the mainstream desktop market, the former has the same 256KB L2 cache configuration as its Coppermine predecessor.

The table below shows the various incarnations of the Pentium III desktop processor to date:

Date Codename Transistors L2 Cache Fabrication (µm) Speed (MHz)
1999 Katmai 9,500,000 512KB 0.25 450/500/550
1999 Coppermine 28,100,000 256KB (on-die) 0.18 533 to 733MHz
2000 Coppermine 28,100,000 256KB (on-die) 0.18 850MHz to 1GHz
2001 Tualatin 44,000,000 256KB (on-die) 0.13 1.2GHz to 1.4GHz

Not only was the Tualatin the company’s first CPU to be produced using a 0.13-micron fabrication process, it also marked Intel’s transition to the use of copper interconnects instead of aluminium.

  • Pentium Architecture
  • Pentium Pro
  • Pentium MMX Technology
  • Pentium II
  • Pentium SEC
  • Pentium “Deschutes
  • Pentium Xeon
  • Pentium III
  • Pentium Tualatin
  • Pentium 4
  • Pentium Northwood
  • Hyper-Threading Technology
  • Pentium Prescott
  • Pentium Processor Numbers
  • Multi-Core Processors
  • Pentium Smithfield
  • Pentium D
  • Pentium Roadmap

Filed Under: Pentium CPUs

Latest Articles

Video Tutorials for Anyone Wanting to Learn About Big Data

Did you know that we create about 2.5 quintillion bytes of data every single day? There is no denying the fact that big data is changing our world in astonding ways. If you are interested in learning more about big data, there are some amazing videos that can help. The best we have come across … [Read More...]

Intel XScale – Pocket PC dynamic power management

In the summer of 2000 Intel made a renewed bid to establish a serious foothold in the market for wireless Internet devices with the launch of its low-power microprocessor architecture dubbed XScale. Built on the StrongARM technology Intel … [Read More...]

Hard Disk Capacity Barriers

Whilst Bill Gates' assertion that 640KB ought to be enough for anyone is the most famous example of lack of foresight when it comes to predicting capacity requirements, it is merely symptomatic of a trait that has afflicted the PC industry … [Read More...]

Gaming Laptop Security Guide: Protecting Your High-End Hardware Investment in 2025

Since Jacob took over PC Tech Guide, we’ve looked at how tech intersects with personal well-being and digital safety. Gaming laptops are now … [Read More...]

20 Cool Creative Commons Photographs About the Future of AI

AI technology is starting to have a huge impact on our lives. The market value for AI is estimated to have been worth $279.22 billion in 2024 and it … [Read More...]

13 Impressive Stats on the Future of AI

AI technology is starting to become much more important in our everyday lives. Many businesses are using it as well. While he has created a lot of … [Read More...]

Graphic Designers on Reddit Share their Views of AI

There are clearly a lot of positive things about AI. However, it is not a good thing for everyone. One of the things that many people are worried … [Read More...]

Redditors Talk About the Impact of AI on Freelance Writers

AI technology has had a huge impact on our lives. A 2023 survey by Pew Research found that 56% of people use AI at least once a day or once a week. … [Read More...]

11 Most Popular Books on Perl Programming

Perl is not the most popular programming language. It has only one million users, compared to 12 million that use Python. However, it has a lot of … [Read More...]

Guides

  • Computer Communications
  • Mobile Computing
  • PC Components
  • PC Data Storage
  • PC Input-Output
  • PC Multimedia
  • Processors (CPUs)

Recent Posts

The Role of Responsive Design in Modern Web Development

Responsive web design is becoming more essential with each passing day. Seventy-one percent of web developers believe the biggest reason users leave a … [Read More...]

What does the data controller have to take into account in order to respond to the exercise of the right to portability under the new GDPR Framework?

It is common to hear about the right to portability in cases such as portability in the telephone industry. We have all tried to change the telephone … [Read More...]

6 Impressive Ways Cloud Phone Systems Lower Costs

Technological developments have played a very big role in improving the cost-effectiveness of businesses. One of the biggest cost savers is a new … [Read More...]

[footer_backtotop]

Copyright © 2025 About | Privacy | Contact Information | Wrtie For Us | Disclaimer | Copyright License | Authors